How Numerical Simulations May Contribute to Tsunami Risk Preparedness: The 26 December 2004 Indian Ocean Event and the Thailand Case Study
نویسندگان
چکیده
The tsunami information, i.e. the sea level elevation, presents useful features that can be used for different case studies. It can be derived from observations, e.g. tide gages records or anomaly of sea level obtained with altimeters, but also through numerical modeling of the tsunami propagation. Once a robust numerical simulation is performed, the wave sequence, compared to available hydrodynamical observations, may help in a better characterization of the tsunami source, e.g., earthquake – or landslide-derived tsunami among the most widespread sources. It may be used for refining a source derived from seismological instrumentations (GPS positioning, seismic stations analysis). As a result, a better identification of source parameters along with a reliable ensemble of numerical simulations of the tsunami propagation and run-up within an area is useful for tsunami risk assessment, e.g., tsunami run-up maps and optimization of the tsunami instrumentation for the purpose of a tsunami warning system. In this context we describe the Thailand case study of the 26 December 2004 Indian Ocean tsunami event.
منابع مشابه
Source Constraints and Model Simulation of the December 26, 2004, Indian Ocean Tsunami
The December 26, 2004 tsunami was perhaps the most devastating tsunami in recorded history, causing over 200,000 fatalities and widespread destruction in countries bordering the Indian Ocean. It was generated by the third largest earthquake on record Mw=9.1–9.3 and was a truly global event, with significant wave action felt around the world. Many measurements of this event were made with seismo...
متن کاملModeling the 26 December 2004 Indian Ocean tsunami: Case study of impact in Thailand
[1] The devastating 26 December 2004 Indian Ocean tsunami stressed the need for assessing tsunami hazard in vulnerable coastal areas. Numerical modeling is but one important tool for understanding past tsunami events and simulating future ones. Here we present a robust simulation of the event, which explains the large runups and destruction observed in coastal Thailand and identifies areas vuln...
متن کاملDispersive Study on Tsunami Propagation of The Indian Ocean Tsunami , 26 December 2004
The Indian Ocean Tsunami (IOT) 26 December 2004 is the most devastating tsunami recorded in history causing over than 200,000 deaths and millions homeless people, uncounted property and infrastructure damaged along the coasts of Indonesia, Thailand, Sri Lanka, and the Maldives. Many lessons can be inferred for this case, one of interesting phenomena is the dispersive effect on tsunami propagati...
متن کاملTsunami Vulnerability Mapping Using Remote Sensing and GIS Techniques: A Case Study of Kollam District, Kerala, India
Tsunamis are caused by the displacement of a large volume of water, generally in an ocean or a sea. Earthquakes, volcanic eruptions and other underwater explosions, landslides, glacier calvings, meteorite impacts and other disturbances above or below water have the potential to generate a tsunami. The coastal areas of Kollam district, the present study area was seriously affected by the catastr...
متن کاملNumerical Simulation of the December 26, 2004: Indian Ocean Tsunami
The December 26, 2004 tsunami is one of the most devastating tsunami in recorded history. It was generated in the Indian Ocean off the western coast of northern Sumatra, Indonesia at 0:58:53 (GMT) by one of the largest earthquake of the century with a moment magnitude of Mw = 9.3. In the study, we focus on a best-fitted tsunami source for tsunami modeling based on geophysical and seismological ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006